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Abstract 

 
An advanced ascent guidance algorithm for rocket-

powered launch vehicles is developed.  The algorithm 
cyclically solves the calculus-of-variations two-point 
boundary-value problem starting at vertical rise 
completion through main engine cutoff, taking into 
account atmospheric effects.  This is different from 
traditional ascent guidance algorithms which operate in 
a simple open-loop mode until the high dynamic 
pressure portion of the trajectory is over, at which time 
guidance operates under the assumption of negligible 
aerodynamic acceleration (i.e., vacuum dynamics).  
Judicious approximations are made to reduce the order 
and complexity of the state/costate system.  Multiple 
shooting is shown to be a very effective numerical 
technique for this application.  In particular, just one 
intermediate shooting point, in addition to the initial 
shooting point, is sufficient to significantly reduce 
sensitivity to the guessed initial costates.  An abort to 
downrange landing site formulation of the algorithm is 
presented.  Results comparing guided launch vehicle 
trajectories with POST open-loop trajectories, for both 
sub-orbital cutoff conditions and orbit insertion 
conditions, are given verifying the basic formulation of 
the algorithm. 

 
 
 
 
 
 
 
 
 
 
 

Nomenclature 
 

Acronyms 
POST Program to Optimize Simulated 

Trajectories 
TAEM   Terminal Area Energy Management 

 
Symbols 

A    aerodynamic axial force magnitude 
CA    coefficient of axial force 
CN    coefficient of normal force 
g    gravity acceleration vector 
H    Hamiltonian function 
h    altitude 
M    Mach number 
m    vehicle mass 
N    aerodynamic normal force magnitude 
q    dynamic pressure 
qα product of dynamic pressure and 

angle of attack 
qβ product of dynamic pressure and 

angle of sideslip 
R great circle range 
r    vehicle position vector 
rx, ry, rz x, y, and z components of position 
S    aerodynamic reference area 
T    thrust magnitude 
tCutoff   predicted cutoff time from guidance 
v    vehicle velocity vector 
vx, vy, vz   x, y, and z components of velocity 
x column vector containing position 

and velocity vectors 
xb, yb, zb  x-, y-, and z-body axes unit vectors 
α    vehicle angle of attack 
β    vehicle angle of sideslip 
γ    vehicle flight path angle 
δ angle between velocity costate vector 

and xb vector 
φ angle between position vector and 

velocity costate vector 
φ0 angle between Earth-relative velocity 

vector and velocity costate vector 
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∆Τ    actual thrust minus vacuum thrust 
λ column vector containing position 

and velocity costates 
λr    position costate 
λry, λrz   components of position vector costate 
λv    velocity costate 
σdir variable set to +1 or –1, specifying 

heads-up or heads-down flight, resp. 
ω0 parameter associated with invocation 

of linear gravity field assumption 
 

Subscripts 
I, I vector or quantity relative to the 

inertial frame 
r, r vector or quantity relative to the 

Earth-fixed frame 
0    initial 

 
Introduction 

NASA, through a program known as the Space 
Launch Initiative1 (also, Second Generation Reusable 
Launch Vehicle program), has set for itself the goals of 
significantly increasing the safety and reliability of the 
second generation of launch vehicles by two orders of 
magnitude (to loss of crew in 1 in 10,000 flights), while 
reducing the launch costs by an order of magnitude (to 
$1,000/pound payload).  In order for the flight 
mechanics discipline to contribute to these goals, it is 
important that guidance and control algorithms be 
highly robust and adaptive to in-flight failures such as 
partial engine loss. 

Traditional ascent guidance algorithms have been 
relatively simple.  The common methodology is to 
operate in ‘open-loop’ mode during the (early) high 
dynamic pressure portion of flight and then, based on a 
pre-determined time or event, switch to a closed-loop 
vacuum guidance scheme which operates on the 
premise that aerodynamic forces can be neglected.  The 
open-loop mode typically makes use of pre-loaded 
tables of Euler attitude commands versus time or 
speed2,3.  The closed-loop logic is based on explicit 
formulas and simplified dynamics that result in a semi-
analytical solution for the optimal steering angles.  This 
partitioning of the flight into distinct phases was 
necessary primarily due to computer throughput and 
memory limitations as well as unavailability of 
advanced algorithms that took into consideration 
aerodynamic forces.  Introduction of aerodynamic 
forces into the problem formulation makes the problem 
much more sensitive and computationally-intensive.  
Simple, well-understood formulas don’t exist as they 
do in the vacuum case, making the complete liftoff-to-
burnout optimization problem difficult to solve reliably 
in real-time.  However, as computer power continues to 

increase, it will be feasible to use more sophisticated 
algorithms capable of increasing the reliability and 
safety of the next generation of launch vehicles. 

Some of the earliest research into extending the 
capabilities of ascent guidance algorithms so that they 
would be effective just after liftoff was done by Brown, 
et. al.4.  In Ref. 4 a linearized aerodynamics model was 
used to obtain the optimal control (thrust direction) 
from the optimality condition in closed form.  Curve 
fits for the lift and drag coefficients and atmospheric 
density, pressure and speed of sound were used in the 
guidance formulation to reduce the computational 
burden imposed by aerodynamics modeling.  The 
conventional shooting method combined with a 
homotopy procedure was used to solve the two-point 
boundary-value problem.  The easily obtained vacuum 
solution was first computed, from which a homotopy 
procedure was used to re-introduce increments of the 
atmospheric effects.  Despite the use of homotopy to 
reduce sensitivity to the initial costate guesses, reliable 
convergence was not always attained.  Kelly develops a 
similar algorithm formulation in Ref. 5 with similar 
convergence difficulties reported, despite attempted 
homotopy procedures, due to inclusion of atmospheric 
terms.  Bradt,et. al.6, use a formulation similar to that of 
Ref. 4 and add a penalty function to reduce bending 
moment loads.  Cramer, et. al.7, use a nonlinear 
programming approach to guidance and take advantage 
of measured day-of-launch winds in the guidance to 
provide load relief.  Hanson, et. al. develop and test 
several atmospheric ascent guidance options in Ref. 8.  
Leung and Calise use a perturbation approach in Ref. 9.  
Calise and Melamed10 use a hybrid collocation 
approach and demonstrate reliable convergence in 
dispersed guided trajectory simulations.  In Ref. 11, 
Gath and Calise extend previous work to normal force 
and angle of attack path constraints and optimization of 
burn-coast-burn sequences. 
 The rest of this paper is organized as follows.  The 
next section describes the ascent guidance problem, 
followed by the formulation of a robust atmospheric 
ascent guidance formulation suitable for nominal flight.  
Next, an abort guidance formulation is presented.  
Numerical results are then given using the guidance 
formulations.  The paper is ended with conclusions and 
recommendations. 

 
Nominal Ascent Guidance Formulation 

 
Trajectory Optimization Problem 
 

The equations of motion for a thrusting rocket in 
atmospheric flight are: 
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where the thrust magnitude, T, and the axial and normal 
forces, A and N are given by: 

 

NA

vac

qSCNqSCA
hTTT

==
∆+=

            
)(    (2) 

 
Some notes on guidance modeling follow.  We’ve 

assumed that all the thrust is aligned along the x-body 
axis, xb.  The velocity vector, v, can be taken as the 
Earth-relative velocity vector or inertial velocity vector 
depending on the context.  For high-speed flight 
(typically occurring ‘outside’ the atmosphere), inertial 
velocity is used whereas for low-speed flight and sub-
orbital missions, it is sufficient to let the velocity in 
question be Earth-relative velocity.  Note that we’ve 
assumed the force along the y-body axis is small and 
hence we ignore it in the equations of motion and 
consequently in the optimization (but not in the guided 
simulations).  In the proceeding developments, the 
position and velocity vectors will be expressed in the 
guidance coordinate frame illustrated in Figure 1.  The 
guidance coordinate frame is an Earth-centered, right-
handed, inertial coordinate system with the x-axis 
aligned with the local vertical and the z-axis aligned 
along the expected downrange direction.  It is re-
defined each guidance cycle with the vehicle’s current 
latitude, longitude and an azimuth angle which 
approximates the downrange direction of travel.  This is 
a convenient frame to work in because, for example, 
the initial position vector expressed in the guidance 
frame has y- and z-components equal to zero and the y 
components of position and velocity are typically near 
zero. 

The aerodynamic coefficients are modeled using 
least squares polynomial coefficients interpolated with 
cubic spline functions of Mach number, a common 
technique for reduction of aerodynamics coefficient 
data in trajectory optimization.  The thrust difference 
term, ∆T, due to the effects of the atmosphere on thrust, 
can in general be represented by a cubic spline 
function.  The density, ρ, is represented by a least 
squares curve fit of the standard atmosphere and 
matches the latter to within 5 percent up to 70 km.  
Similarly, a least squares 3rd-order polynomial fit is 
used to accurately model the speed of sound, a. 

At the time of engine cutoff, tCutoff, k terminal state 
constraints, nonlinear functions of the states, are 
imposed: 
 

( ) ( )( )
6   ,,,1 

    ,0,

≤=

==

kki

tt CutoffCutoffii

K

vrψψ
  (3) 

 
Examples of terminal constraints include final position 
magnitude, flight path angle, semi-major axis, 
argument of perigee, inclination and longitude of the 
ascending node. 

In general, path constraints of the form: 
 

0),,( ≤tS ux       (4) 
 

are imposed where x is the state and u is the control.  
Examples include maximum axial and normal 
acceleration, maximum normal force, minimum throttle 
level, angle of attack, angle of sideslip, and min/max 
values of qα, qβ and maximum dynamic pressure.  The 
axial force and minimum throttle constraints are fairly 
straightforward to handle.  Gath and Calise considered 
angle of attack and normal force constraints in Ref. 11 
using the mathematical rigor contained in Ref. 12, 
section 3.10.  Constraints on qα and qβ can be handled 
in an analogous way because they too are functions of 
the state and control variables.  The maximum dynamic 
pressure constraint, however, is a state variable 
constraint.  It is well-known that state variable 
inequality constraints are difficult to treat using optimal 
control theory.  One can also easily conceive of 
alternative, less rigorous methods of constraining 
dynamic pressure that may be just as effective and 
more appropriate for onboard guidance, e.g., Corvin13 
uses a feedback control law which provides maximum 
dynamic pressure control via throttle modulation. 

We consider now the question of where to point 
the z-body axis, zb, which is a function of the control xb 
but is not fully specified given xb.  This decision is a 
function of how we want the vehicle to fly.  We can 
choose to construct zb so that the vehicle flies at zero 
angle of sideslip: 
 

( )vxxz bbb ××||     (5) 
 
or so the vehicle flies a zero degree (“heads-up) or 180 
degree (“heads-down”) bank angle trajectory: 
 

( )0bbb rxxz ××||     (6) 
 

The zero-sideslip option requires a non-zero roll 
angle and possibly excessive roll maneuvering.  It is 
likely that future launch vehicles will have limited roll 
control authority.  The heads-up/heads-down option 
will inherently result in larger angles of sideslip but this 
can be attenuated fairly easily, if need be, by imposing 
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a sideslip path constraint.  In the proceeding, we adopt 
the heads-up/heads-down option. 

The optimization problem can be stated as follows.  
Determine the x-body axis history, xb(t), that 
maximizes the final vehicle mass (equivalent to 
minimizing fuel usage or minimizing flight time) 
subject to the equations of motion (1), the terminal 
constraints (3) and the path constraints (4) 
 
Costate Differential Equations 
 

We note that the atmospheric portion of flight 
occurs over a very small ground track, enabling the use 
of the flat-Earth approximations14: 

 
Ex rrh −≅        

[ Tg 000≅g ]

)

     (7) 
 
With these, the state equations become (with explicit 
state dependencies called out): 
 

( ) ( )( ) (

( ) ( )( ) ( )

( ) ( )( ) ( )
m

zrNxrArTv

m

zrNxrArT
v

m
zrNxrArT

gv

vrvrvr

bzxbzxx
z

byxbyxx
y

bxxbxxx
x

zzyyxx

x

xx

vv

vv

vv

,,

,,

,,

              

0

−−
=

−−
=

−−
+−=

===

&

&

&

&&&

(8) 

 
The costate equations then are given by: 

0==
zy rr λλ &&          
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m
NA

v
H

m
NA

v
H

m
NA

v
H

m
NAT

r
H
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−=

⋅+⋅−−
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λλ

λλ

λ
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&

(9) 

 
where the subscripts h, vx, vy, and vz denote partial 
differentiation with respect to those variables.  No 
known analytic solutions for the atmospheric 
state/costate system exist so we resort to a second-order 
Runge-Kutta numerical integration scheme to 
propagate the state/costate system.  Ten integration 
steps are sufficient to obtain a good guidance solution. 

In the next subsection, we apply the maximum 
principle to obtain the optimal control for atmospheric 
flight. 

 
Optimality Condition 

Applying the maximum principle to the 
Hamiltonian results in the optimization sub-problem: 

 
( )
















 −−
⋅

m
NAT

v
bb

bx

zx
λmax   (10) 

 
Note that the optimal control, xb

o (and hence, 
optimal z-body axis, zb

o) lies in the plane defined by the 
(initial) position and velocity-costate vectors.  Thus, 
with reference to Figure 2 (after Gath and Calise11) , the 
optimization sub-problem (10) can be written simply as 

 
( ) ( ) ( ){ }δδ

δ
sincosmax NAT +−   (11) 

 
Note that we need to be able to evaluate α in terms 

of δ so that we can evaluate A and N in the previous 
equation.  From Figure 2, it is clear that α is some 
constant, α0, (that is, constant with respect to δ) minus 
δ: 

δαα −= 0      (12) 
 

The formula for α0 can be derived by setting δ to 
zero and solving for α via: 

 
( )

( )
( )

( )
( )

( ) ( )[ ]
( )

( ) ( )[ ]
( ) ( ) 







 −
=

−
=⋅=

−
=

××
=

=⋅=

−

0

01
0

0

0

cossin
coscostan

sin
coscos

sin
ˆcos

sin
ˆ

cos

φφ
φφσ

α

φ
φφσ

φ
φ

σ
φ

σ

φ

v
vv

vvv

vv

xdir

x
dirz

dirdir

x

b

b

b

0b0bb
b

b

zv

rxrxxz

xv

 (13) 

In the preceding, note that φ and φ0 are simple functions 
of the state and costate. 

The maximization sub-problem can be solved in 
many ways.  One option is to take the derivative with 
respect to δ, set to zero and use an iterative procedure 
(e.g., Newton’s method) to get the root which 
corresponds to the optimum δ.  This approach was 
found to be problematic because there are situations 
when the Hamiltonian (as a function of δ) is very flat 
and Newton’s method is very slow to converge.  A 
more direct method is to do a Golden Section search15.  
The Golden Section algorithm is relatively inefficient 
but the function to be optimized in this case, the 
Hamiltonian, is fairly inexpensive to evaluate. 
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Once the Hamiltonian is maximized, we need to 
construct the x- and z-body axes so that we can 
evaluate the state/costate differential equations.  Start 
by expressing the x-body axis as a linear combination 
of costate and initial position vector 
 

0vb rλx ˆˆ 11 ba +=      (14) 
 

Dot the preceding with velocity costate and with 
initial position to get 
 

( ) ( )
( ) ( ) 11

11

cosˆcos
cosˆcos

ba
ba

+=⋅=+

+=⋅=

φδφ
φδ

b0

bv

xr
xλ  (15) 

 
Solve the preceding two equations for a1 and b1 in 

terms of the angles φ and δ: 
 

( ) ( ) ( )
( )

( ) ( ) (
( )

)
φ

δφδφ
φ

δφφδ

21

21

sin
coscoscos

sin
coscoscos

−+
=

+−
=

b

a
  (16) 

 
The z-body axis is constructed via: 
 

( ) ( )

( )

( )( )
( )( )
( )( )
















+
+

−+

+
=

××
+

=×=

111

111

2
11

cos
cos

1cos

sin

ˆ
sin

baa
baa

ba

z

y

v

v
dir

dir

φλ
φλ

φ

δφ
σ

δφ
σ

0bbbbb rxxyxz

(17) 

 
Transversality Conditions 

 
The transversality conditions consist of conditions 

on final costate, referred to in the sequel as ‘costate 
conditions’, and on the final Hamiltonian: 

 
( )
( ) 1=

=

f

f

tH

t x
TT ψνλ

    (18) 

 
where ν is a column-vector of constant Lagrange 
multipliers, ψ is the column-vector of terminal state 
constraints and ψx is the ‘constraint gradients matrix’, 
that is, the k by 6 matrix whose k rows are the gradients 
(wrt state, x) of the terminal state constraints.  The 
costate conditions are equivalent to requiring that the 
final costate vector be orthogonal to the space spanned 
by all admissible final state variations δx.  For a given 
set of k terminal state constraints, expressions for 6-k 

admissible, or ‘transversality vectors’, are obtained a 
priori and the inner products of the final costate with 
these vectors are iteratively driven to zero (using a 
modified Newton’s method) simultaneously with the 
terminal state constraints.  As an example, whenever 
argument of perigee is free, the admissible state 
variation corresponds to a rotation about the angular 
momentum vector, hence, one of the 6-k required 
transversality vectors is16: 
 

( )
( ) 












⋅−
−⋅

=







×
×

=
vvrr
vrvr

hv
hr

2

2

v
rxδ    (19) 

 
Note that, because the costates can be arbitrarily 

scaled by a positive factor, the end-point condition on 
the Hamiltonian is equivalent to requiring that the 
Hamiltonian be positive.  This condition is usually 
satisfied and is indeed satisfied whenever all the 
terminal state constraints are Keplerian constants (e.g., 
semi-major axis, eccentricity) and the costate 
conditions are satisfied.  To see this note that for any 
Keplerian constant, ψ 
 

0, 3 =











−==

T
T

T

r

rvx xx µψψψ &&   (20) 

 
hence, [ vT, g(r)T ]T is a transversality vector whenever 
all the terminal constraints are Keplerian constants 
(also, whenever true anomaly is free) and thus 
satisfaction of the costate conditions imply that the 
‘Keplerian’ part of the Hamiltonian (at the final time) is 
zero.  Now, note that the sign of the non-Keplerian part 
of the Hamiltonian is of definite sign: 
 

0ˆ >=
m
T

m
T

v
T
v λuλ     (21) 

 
Hence, H(tf) > 0 and the end-point condition on the 
Hamiltonian can generally be replaced by the simpler 
(non-constraining) condition that the final costate 
magnitude be unity. 
 
Vacuum Guidance Formulation 
 

Whenever dynamic pressure is reasonably small, 
say, less than 50 psf, the vacuum assumption can be 
invoked.  Under the assumption of linear steering, i.e.,: 

 

( )
BA
BA

+

+
=

t
t

tbx      (22) 
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and constant thrust magnitude or constant thrust 
acceleration, a closed-form solution exists for the thrust 
integral requiring no numerical integration or 
quadrature17.  The gravity integral is obtained using a 
predictor-corrector step.  Because the gravity vector 
doesn’t change significantly over the ascent trajectory, 
one step is usually sufficient. 

Next, for the costate vacuum solution, we assume a 
linear central gravity field 18-19, that is: 

 

rrrg 2
03

0
)( ωµ

−≡−≅
r

    (23) 

 
so that the costate differential equations become: 
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
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3
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v

r
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3

2
0

0
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&

&
   (24) 

 
whose solution is: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )000
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0

00000

cossin)(

sincos)(

ttttt

ttttt

vrv

vrr

λλλ

λλλ

ω
ω
ω

ωωω

+−=

+=
 (25) 

 
Typically, for a given mission, a good initial guess 

for the mission-elapsed time at which dynamic pressure 
becomes small is available.  Up until that ‘simulated’ 
time, the atmospheric equations developed earlier are 
used in the (numerical) propagation of state/costate.  At 
that point, the current propagated state/costate is 
handed off to the ‘vacuum propagator’ (after Ref. 8).  It 
is advantageous to do this, that is, only use the 
atmospheric equations when absolutely necessary, 
because the atmospheric equations are much more 
complicated than the analogous vacuum equations.  
Note that it is not critical that the predicted time of 
‘atmospheric exit’, tExo, be especially accurate.  If need 
be, the predicted dynamic pressure at tExo can be 
monitored and tExo increased if necessary. 
 
Numerical Solution Method 
 
 The multiple shooting method20 is used to solve the  
resulting two-point boundary-value problem.  The 
values of the six initial costates, and the engine cutoff 
time are the free variables that must be iterated upon to 
null the k terminal state constraints, the 6-k costate 
conditions and the constraint on final costate 
magnitude.  Multiple shooting allows the user to guess 
state/costate values at more than just the initial point, 
significantly reducing the well-known sensitivity to the 
initial costates.  In fact, it has been found that insertion 

of just one additional shooting point (besides the initial 
shooting point), placed just after peak dynamic 
pressure, dramatically reduces the sensitivity compared 
to single shooting. 
 

Abort Guidance Formulation 

 

The abort guidance formulation is very similar to 
the nominal guidance formulation.  In the case of abort 
to downrange or abort to launch site, the target values 
are obtained from an entry profile21, i.e., a table of 
reference altitude, speed, and flight path versus range-
to-HAC ‘break points’, available from onboard data 
used (or generated) by the entry guidance function.  An 
additional constraint for aborts to a landing site is that 
fuel be depleted during the ascent burn so that, e.g., 
landing gear loads are not exceeded. 

A set of terminal constraints for a downrange abort 
case is given by: 

( )
( )( ) ( ) (

( ) 0
0sincos

0sin
0

2

=×⋅
=−××⋅

=−⋅
=−

HAC

HAC

rrv
rrrv

rv

θγ

γ

rv

vr
rr

dd

ddd

d

 (26) 
)

where the HAC radius vector, rHAC, is a unit vector 
directed from the center of the Earth to the heading 
alignment cone, the desired values (‘d’ subscripts) are 
obtained from the re-entry profile, and the range angle, 
θ, is the angle subtended by the vehicle position vector 
and the HAC radius vector.  The first constraint fixes 
the altitude, the second and third fix the vertical and 
horizontal speeds, resp., and the fourth nulls the vehicle 
heading error with respect to the HAC.  Note that the 
third ensures that the vehicle is actually headed toward 
the HAC and not away from it. 

For the case of downrange aborts, we want to burn 
all the propellant so, instead of optimizing fuel usage, 
we choose to maximize final speed v.  The 
transversality conditions are: 

 
( )

( ) 0

2,1          ,0

3 =⋅−⋅=⋅=

==⋅− =

rλvλfλ

δxφλ ix

r
tH

i

vrf

tt f

µ   (27) 

where we’ve assumed that we intercept the re-entry 
profile on a coast arc, ϕx is the gradient of the 
performance index with respect to state, x, and where 
the ‘admissible’ state vectors, δxi, are given by: 
 









×
×

=
HAC

HAC

rv
rr

δx1      (28) 
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and 



























−

∂
∂

×
×

−
∂
∂

×
×

+
∂
∂

=

e

e

RR
v

vR
v

R
r

rR
r

1γ
vh
vhv

rh
rhr

δx2
  (29) 

 
The transversality vector δx1 reflects the fact that a 

perturbation of the final position normal to the flight 
plane combined with a perturbation of the final velocity 
normal (but opposite in sign) to the flight plane is 
admissible.  The transversality vector δx2 is a 
calculation of the admissible change in final position 
and velocity given a perturbation of final range (treated 
as a free variable). 

The transversality conditions (27) can be written: 

( ) 0
0
0

22

=
=⋅−⋅
=⋅−⋅

ftH
φ
φ

δxδxλ
δxδxλ

x

1x1

    (30) 

 
or, equivalently as: 

 

( )( ) ( )( )
( ) 0

0
0

22

=
=⋅⋅−⋅⋅

=⋅−⋅

ftH
φφ

φ
δxδxλδxλδx

δxδxλ

x11x

1x1

  (31a,b,c) 

 
Suppose all the necessary conditions are satisfied 

except (31a).  Then, (31a) can be solved by scaling the 
costate vector by an appropriate factor.  Note that the 
arbitrary scaling has no effect on the necessary 
conditions or on the trajectory.  If we enforce (31b) 
instead of both (31a) and (31b), we can retain our logic 
from the nominal guidance formulation wherein we 
keep the initial costate vector normalized, |λv(t0)|=1 and 
impose the non-constraining constraint |λv(tf)|=1.  Now, 
substituting v for ϕ, we have: 












=

v
v

v
v

v
v zyx

x 000ϕ   (32) 

 
Then, using (31b), (31c), and the second of (32), the 
transversality conditions reduce to the simple form: 

 
( ) ( )

( ) 0
00

=
=×⋅+×⋅⇒=⋅

ftH
HACvHACr1 rvλrrλδxλ

 (33) 

 
To sum up the constraints, we have the four final 

state constraints (26), the transversality conditions (33), 
and the (non-constraining) constraint |λv(tf)| = 1.  The 

parameters to be iteratively determined are the six 
initial costates and the time of flight. 

 

Numerical Results 

 
The algorithm formulation as described above has 

been coded in C and integrated into the high-fidelity 
MAVERIC/X-33 trajectory simulator which includes 6 
degrees of freedom, a day-of-launch winds model, and 
the GRAM atmosphere model.  For sub-orbital 
missions, the X-33 vehicle model was used.  To enable 
orbital insertion missions, the Isp of the X-33 vehicle 
was doubled.  The end of the atmospheric phase was 
taken as 140 seconds inside the guidance solution 
process whereafter the vacuum solution is used.  One 
intermediate shooting point was used.  A qα constraint 
of 500 psf-deg was imposed inside the guidance 
solution process.  For the two orbital missions, an axial 
acceleration limit of 3.5 g’s was imposed.  As a rough 
indicator of algorithm efficiency, the 3 degree-of-
freedom simulations run significantly faster than real-
time on a three-year old DEC alpha 
computer/processor.  The initial guess was generated 
from the vacuum solution although other simpler 
methods would probably work just as well.  Results for 
three mission simulations are shown here:  1) A 6 
degree-of-freedom sub-orbital mission simulation 
launching from Edwards Air Force Base to Michael 
Army Air Field in Utah, 2) a 3 degree-of-freedom 
orbital mission launching from Kennedy Space Center 
to a 100 by 100 nautical mile circular, 28.5 degree 
inclination orbit, and 3) a 3 degree-of-freedom orbital 
mission launching from Kennedy Space Center with 
simulated 50 percent thrust loss at 90 s into the mission 
requiring a downrange abort to a runway in Spain.  For 
the first mission, the X-33 vehicle model3 was used and 
for the remaining two, the X-33 vehicle with increased 
Isp was used.  The guidance in all cases was executed 
at 1 Hz with complete updates (re-optimized 
trajectories) each cycle starting at liftoff, although for 
the first four seconds, the guidance solution was 
ignored and the guidance commands were set to 
execute a vertical rise.  In all cases, open-loop reference 
trajectories (from POST) are available and comparison 
plots were made to verify acceptable performance of 
the guidance.  In the orbital case, the guided trajectory 
was very comparable to the open-loop trajectory with 
the guided trajectory out-performing the POST 
trajectories by an insignificant 200 pounds fuel. 

Figures 3-5 pertain to the sub-orbital mission.  
Figure 3 compares the ascent altitude and flight path 
angle histories of the MAVERIC closed-loop and 
POST open-loop simulations.  Although the histories 
are noticeably different in the middle of the trajectory, 
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the end-points are virtually identical.  Figure 4 shows 
the qα and qβ hisories and Figure 5 shows the ground 
track. 

Figures 6-8 pertain to the 100 nmi circular orbit 
insertion mission.  Again, very comparable 
performance and insertion accuracy are obtained.  The 
ground tracks differ by the geodetic to geocentric 
correction. 

Figures 9-15 pertain to the abort-to-downrange site 
mission.  Figure 9 shows the time and magnitude of the 
thrust loss.  Figure 10 shows the altitude and speed  
profiles for the entire ascent through entry.  The latter 
phase was flown with closed-loop entry guidance to 
further verify that the ascent guidance delivered the 
vehicle to an entry-compatible state.  Figure 11 shows 
the ground track which is compatible with landing in 
Spain.  Figure 12 shows the angle of attack and 
sideslip.  Apparently, the optimal thing to do to adapt to 
thrust loss is to pitch up.  Figure 13 shows qα and qβ 
which are both fairly benign.  Figure 14 shows the 
heading error with respect to the HAC.  This verifies 
that the ascent guidance is successful at nulling heading 
error at main engine cutoff.  Figure 15 shows the 
commanded cutoff time, an output from guidance.  The 
prediction is quasi-constant indicating that the guidance 
is sufficiently accurately modeling aerodynamics, 
gravity and thrust. 

 
Summary and Conclusions 

 
 This paper describes an ascent guidance algorithm 
that re-optimizes the entire ascent trajectory each 
guidance cycle from liftoff to main engine cutoff.  
High-fidelity guided trajectories compared with POST 
open-loop trajectories demonstrate that it provides 
near-optimal performance despite flat-Earth 
simplifications of the costate equations.  The high-
fidelity trajectory simulator with the guidance cycling 
at 1 Hz runs significantly faster than real-time, 
indicating the algorithm’s efficiency.  An abort-to-
downrange site formulation is given along with guided 
abort trajectory results.   

Future work will involve using day-of-launch 
winds in the guidance solution and incorporating 
Mach-scheduled angle of attack constraints.  Several 
candidate RLVs are 2-stage vehicles with gimbaled 
engines, possibly requiring modification of the 
assumption that all thrust is directed along the x-body 
axis. 
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Figure 1:  Guidance Reference Frame 
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Figure 2:  Angles Pertaining To Optimality Condition 
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